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Efficient Synthesis of Benzene and Planar
Cyclooctatetraene Fully Annelated with
Bicyclo[2.1.1]hex-2-ene
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Recently, the phenomenon of bond alternation (or localization)
in benzene, which is associated with the MiNixon effect?

has become the focus of revisited attention, and such a bond—__
alternated benzene, that is, 1,3,5-cyclohexatriene, has been not

only a subject of considerable theoretical investigatiout also
a synthetic target for organic chemists.

For examples of the compounds that possess cyclohexatrieneSuccessfully afforded benzegen 4

motifs, several “phenylenes” such asave been synthesizéd,
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a(a) 2,4,6-triisopropylbenzenesulfonylhydrazide,@&trt, 77%. (b)
t-BuLi, THF, —78— 0 °C. (c)n-BusSnCl,—78°C, 88%. (d) 5, CCl, rt,
78%. (e)t-BUOK, THF, rt, 94%. (An-BuLi, THF, —78°C. (g) Cul,—78
—45°C. (h) CuCh, —78 °C — rt. (i) Cul, —78 °C — rt.

in THF followed by the sequential addition of Cul and CuCl
3% yield! The overall yield
of 2 from the starting ketone was 21%, and the availability of

and X-ray analysis has revealed the manifestation of a pronouncedn @ larger quantity should allow thorough exploration of the

bond alternationAR = Rengo— Rexo = 0.1~0.18 A) in the central

chemistry of this bond-alternated benzehe

benzene ring. On the other hand, Siegel et al. have reported the Star-phenylenel has been reported to undergo reactions

synthesis of tris(bicyclo[2.1.1]hexeno)benzel@g*(as the first
example ofmononuclear benzenoid hydrocarbwith a cyclo-
hexatriene-like geometryAR = 0.089 A)5 Compared with such
phenylenes a§, in which the central benzene ring is embedded
within extensively delocalized-systems, electronic perturbation
of the central benzene ring would be much less significar#t in
with no annelation ofz-systems. Thus, compourzl may be

characteristic of olefin rather than of benzene, that is, hydrogena-
tion? epoxidation? and cyclopropanatioh, which could be
ascribable to significant bond localization. Although the degree
of bond alternation ir2 is much smaller than it (AR = 0.159
A),3aboth epoxidation and cyclopropanationzdo, in fact, take
place readily. As shown in Scheme 2, reaction Dfwith
m-chloroperbenzoic acid afforded dalis-trisepoxide 5 in a

considered to be a more appropriate model for probing the natureduantitative yield, and a modified SimmonSmith reaction gave

of the “cyclohexatriene” itself. However, its yield is extremely
low (<1% in the final step), which hampers further scrutiny of
this fascinating molecule. Here we report an efficient synthesis
of 2, as well as the first synthesis of a novel cyclooctatetraene
(COT) derivative3 with a completely planar cyclic/8system.
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3
An efficient route to2 was established by cyclotrimerization

2
of the organometals derived from 2,3-diiodobicyclo[2.1.1]hex-
2-ene, which was synthesized from bicyclo[2.1.1]hexan-Z-one
(Scheme 1). Treatment of the diiodoolefin witkbutyllithium
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all-cis-triscyclopropanes in 75% yield. However is inert to
catalytic hydrogenation and diimide reduction, presumably for
steric reason¥’

Scheme 2

(9)
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a(a) mCPBA, CHCly, t. (b) ZNEB/CHalz, CICHCH.CI, rt.

On the other hand, when the cyclotrimerization reaction was
conducted without CuGl(Scheme 1), COB was obtained as
an orange solid in 21% vyield, together with a mixture of benzene
2 and the dime# (34 and 5%, respectively). Considering the
observed effect of the annelation with bicyclo[2.1.1]hexen2 in
to localize the double bond to the position exo with respect to
the annelation, the CO3was expected to possess a planar eight-
membered ring instead of the usual tub-shaped!bieThe
anticipatedD,, symmetric structure is reflected in the simplicity
of the 'H and3C NMR (CDCk) spectrat® 'H NMR (Figure 1)
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Figure 2. ORTEP drawing of3 (50% probability).

0 3.03 (t,Bas = 2.7 Hz, 8H, H)), 1.71 (m, 8H, H), 1.13 (dd,
Fee = 3.6 Hz, Psc = 1.5 Hz, 8H, K); 13C NMR ¢ 132.25
(olefinic), 47.19 (bridgehead), 37.11 (methylene).

The molecular structure oB was determined by X-ray
crystallography (Figure 2Y. As expected, the central eight-

membered ring is planar, and all internal bond angles of the COT

ring are almost 135(134.8-135.2, average 135.0(1). The bond

lengths are alternately shorter (average 1.331(1) A) and longer

(average 1.500(1) A) with the shorter bonds exocyclic to
bicycloannelation. Thus, compour8lis proven to be the first

non-benzoannelated hydrocarbon with a completely planar COT

ring.

The UV-vis spectrum of3 in CH,Cl, exhibited the longest
wavelength absorption at 459 nm130). This value is red-shifted
by 177 nm compared with that of tetrakis(bicyclo[2.2.2]octeno)-
COT (7)*® (Amax = 282 nm,e 800) with the tub-shaped COT ring,
indicating that planarization of the COT ring i causes a
substantial decrease in the HOMQUMO gap.

The remarkable influence of planarization on the electronic
structure of COT was also manifested by the oxidation potential
of 3 as measured by cyclic voltammetry in gH,. COT 3
exhibited a well-defined reversible oxidation wave+&d.07 V
versus Fc/Ftand an irreversible one &t0.76 V. These potentials
are lower by~0.4 V than corresponding values 1 which is
evidently due to planarization that raises the HOMO of COT.

In view of the cyclohexatriene-like geometry of the benzene
ring in 2 and the planar geometry of the COT ringdnthe most
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Table 1. Calculated Aromatic Stabilization Energies (ASE,
kcal/mol), Magnetic Susceptibility Exaltationa ( ppm cgs), and

the Nucleus Independent Chemical Shifts (NICS, ppm) at the Ring
Centers

compd ASE A° NICS?
benzene —34.1 -16.2 -9.7
2 —34.0 -84 -8.0
planar COT Dap) 2.9 61.1 27.2
3 4.1 17.2 10.6

aB3LYP/6-31G* geometries were employed33LYP/6-31H-G**. 17
¢ CSGT-HF/6-3%-G**. 17 d GIAO—HF/6-31+G**,

ticity and antiaromaticity. Since the bridgehead hydrogen® in
and3 are rigidly fixed in the same plane afsystems, they are
most susceptible to the effect of the ring current, and tHeir
NMR chemical shift is the most useful indicator for characterizing
aromaticity/antiaromaticity. Surprisingly, the difference id
NMR chemical shifts of bridgehead protons betw@emd3 was
found to beonly 0.18 ppm(6 3.21 for2 in CDCl,), despite the
change in ther-system from formally aromatics6to formally
antiaromatic 8.

To evaluate the aromaticity & and the antiaromaticity o3,
the nucleus independent chemical shifts (NIE3)e magnetic
susceptibility exaltations A), and the aromatic stabilization
energies (ASE) were calculated and3 as well as for benzene
and theDy4, planar COT (Table 137 To compensate for the strain,
reference molecules used to estimate the ASE were optimized
under appropriate constrairifs.

The large negative NICS value 2f—8.0), comparable to that
of Dgn benzene itself{9.7), indicates tha? retains a substantial
degree of aromaticity, which is consistent with the previous results
of theoretical calculations for hypothetical cyclohexatriéie.
The considerable aromatic characteRafias also confirmed by
the negativeA value (—8.4) and the large ASE (34.0 kcal/mol).

On the other hand, although the destabilization energ$ of
slightly exceeds that of the,, planar COT, the NICS value (10.2)
as well as the\ value (17.2) is considerably reduced, compared
with those of theDy, planar COT. Such a reduction of antiaro-
maticity of 3 might appear to be attributed to an enhanced bond
alternation AR = 0.161 A) relative to that in thBy, planar COT
(AR = 0.132 A). However, the NICS value of the hypothetical
molecule, tetrakis(cyclobuteno)COT, which has the same degree
of bond alternation4R = 1.491 A— 1.336 A= 0.155 A) as3,
reveals the considerable retention of antiaromaticity (NICS: 20.9).
Thus, electronic interaction between 1,3-bridged cyclobutane
subunits in the bicyclohexene frameworks and the planar COT
ring must be responsible for the change in the inherent magnetic
properties and the reduced antiaromaticity of the present 8
electronic systen3.
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